Invariant representative cocycles of cohomology generators using irregular graph pyramids

نویسندگان

  • Rocío González-Díaz
  • Adrian Ion
  • Mabel Iglesias Ham
  • Walter G. Kropatsch
چکیده

Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. An extension to obtain scanning and rotation invariant cocycles is given. 2011 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irregular Graph Pyramids and Representative Cocycles of Cohomology Generators

Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any...

متن کامل

Homology Group Generator Analysis in Irregular Graph Pyramids

Computation of homology generators using an irregular graph pyramid can significantly increase performance compared to the classical methods. First results in 2D exist and show the advantages of the method. The generators are computed in upper levels of pyramid where it is known that the graphs contains a number of self loops and multiple edges product of the contraction processes. Using a stra...

متن کامل

Computing Homology Group Generators of Images Using Irregular Graph Pyramids

We introduce a method for computing homology groups and their generators of a 2D image, using a hierarchical structure i.e. irregular graph pyramid. Starting from an image, a hierarchy of the image is built, by two operations that preserve homology of each region. Instead of computing homology generators in the base where the number of entities (cells) is large, we first reduce the number of ce...

متن کامل

Explicit Formulae for Cocycles of Holomorphic Vector Fields with values in λ Densities

The continuous cohomology of Lie algebras of C-vector fields has been studied by I. M. Gelfand, D. B. Fuks, R. Bott, A. Haefliger and G. Segal in some outstanding papers [4], [9], [1]. B. L. Feigin [2] and N. Kawazumi [11], whose work is continued in [18], studied Gelfand-Fuks cohomology of Lie algebras of holomorphic vector fields Hol(Σ) on an open Riemann surface. Kawazumi calculated the coho...

متن کامل

Link invariants from finite racks

We define ambient isotopy invariants of oriented knots and links using the counting invariants of framed links defined by finite racks. These invariants reduce to the usual quandle counting invariant when the rack in question is a quandle. We are able to further enhance these counting invariants with 2-cocycles from the coloring rack’s second rack cohomology satisfying a new degeneracy conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2011